Automatic detection of mitochondria and cross-domain macromolecule structure classification in cellular electron cryo-tomograms

Xu Lab
Computational Biology Department
Carnegie Mellon University

Overview

Cross-domain macromolecule classification in cellular tomograms

Ruogu Lin*, Xiangrui Zeng*, et al, ISMB 2019

1st and 2nd year CPCB PhD students.

Automatic detection of mitochondria in cellular tomograms

Ran Li*, Xiangrui Zeng*, et al, BMC Bioinformatics

In collaboration with Freyberg lab at Pitt and Jiang lab at THU

Funding support: NIH P41 GM103712

Adversarial domain adaptation for cross data source macromolecule in situ structural classification in cellular electron cryo-tomograms

Macromolecule

Macromolecules

Cell cytoplasm

Cryo-electron tomography

A: Sample preparation

B: Imaging through tilt-series

C: Data collection

D: 3D reconstruction & analysis

Structural pattern mining

Xu et al 2019

Classifying macromoleule structures in Cryo-ET

Subtomogram classification

Cross-domain classification problem

- 1. Deep learning based classification achieved signicant improvement in accuracy and throughput. However it requires large amount of training data.
- 2. Annotating a dataset for training is laborious
- 3. It is ideal to transfer the knowledge from simulated dataset or already annotated dataset to new dataset.
- 4. However different datasets have different image intensity distributions due to different experimental conditions.

Domain shift

A subtomogram: x Class label: y

Source domain: D_s Target domain: D_t

Covariate shift:

$$\mathbb{P}_{x \sim D_s}(y|x) = \mathbb{P}_{x \sim D_t}(y|x)$$
, but $\mathbb{P}_{x \sim D_s}(x) \neq \mathbb{P}_{x \sim D_t}(x)$

Prior probability shift:

$$\mathbb{P}_{x \sim D_s}(y|x) = \mathbb{P}_{x \sim D_t}(y|x)$$
, but $\mathbb{P}_{x \sim D_s}(y) \neq \mathbb{P}_{x \sim D_t}(y)$

Concept shift:

$$\mathbb{P}_{x \sim D_s} (y|x) \neq \mathbb{P}_{x \sim D_t} (y|x)$$

3D Adversarial Domain Adaptation (ADA)

Algorithm & Model architecture

Algorithm 1 Adversarial Domain Adaptation Training

Input:

Set of subtomograms from source domain: X_s

Set of subtomograms from target domain: X_t

Domain labels: $L_s = 0$ and $L_t = 1$

Trained Source Feature Extractor: F_s

Output:

Trained domain discriminator: D

Trained target feature extractor : F_t

1: **for** *n* training iterations **do**

2: **for** *k* steps **do**

3: Sample minibatch of m samples $\{x_s^1, \dots, x_s^m\}$ from X_s .

4: Sample minibatch of *m* samples $\{x_t^1, \dots, x_t^m\}$ from X_t .

5: Update D by ascending stochastic gradient of L_D , with F_t fixed:

$$\nabla_{\theta_{D}} \frac{1}{m} \sum_{i=1}^{m} \left[-\log \left(D\left(F_{t}\left(x_{t}^{i}\right)\right) - L_{s}\right) - \log \left(L_{t} - D\left(F_{s}\left(x_{s}^{i}\right)\right)\right) \right]$$

6: Sample minibatch of m target samples $\{x_t^1, \dots, x_t^m\}$ from X_t .

7: Update F_t by descending stochastic gradient of L_F with the D fixed:

$$\nabla_{\theta_{F_t}} \frac{1}{m} \sum_{i=1}^{m} \left[-\log \left(L_t - D\left(F_t \left(x_t^i \right) \right) \right) \right]$$

8: return D, F_t

Simulated datasets

Dataset batch A and B, each contains 5 datasets with different SNR 23*1000 subtomograms in each dataset

Different imaging condition: spherical aberration and defocus

PDB ID	Macromolecular complex
1A1S	Ornithine carbamoyltransferase
1BXR	Carbamoyl phosphate synthetase
1EQR	Aspartyl tRNA-synthetase
1F1B	E. coli aspartate transcarbamoylase
1FNT	Yeast 20S proteasome with activator
1GYT	Aminopeptidase a
1KP8	GroEL-KMgATP 14
1LB3	Mouse L-chain ferritin
1QO1	Rotary motor in ATP synthase
1VPX	Transaldolase
1VRG	Propionyl-CoA carboxylase, beta subunit
1W6T	Octameric enolase
1YG6	ClpP
2BO9	Human carboxypeptidase A4
2BYU	Small heat shock protein Acr1
2GHO	Recombinant thermus aquaticus RNA polymerase
2GLS	Glutamine synthetase
2H12	Acetobacter aceti citrate synthase
2IDB	3-octaprenyl-4-hydroxybenzoate decarboxylase
2REC	RecA hexamer
3DY4	Yeast 20S proteasome
4V4Q	Bacterial ribosome
NULL	(No particle)

Cross-domain prediction accuracy

Accuracy	SNR of Target Domain (S_A)					
		1000	0.5	0.1	0.05	0.03
	1000	0.855	0.687	0.385	0.235	0.157
		0.739	0.620	0.287	0.159	0.111
		0.760	0.638	0.289	0.162	0.114
		0.991	0.923	0.737	0.499	0.326
	0.5	0.779	0.757	0.547	0.366	0.258
_		0.806	0.710	0.479	0.372	0.291
l ii		0.819	0.723	0.486	0.373	0.291
SNR of Source Domain (SB)		0.978	0.970	0.835	0.628	0.464
e	0.1	0.902	0.922	0.894	0.726	0.503
(S _B)		0.864	0.881	0.776	0.637	0.475
S.		0.905	0.920	0.826	0.650	0.479
\ o \		0.894	0.932	0.901	0.760	0.626
Ë	0.05	0.946	0.950	0.911	0.766	0.563
S		0.937	0.929	0.897	0.758	0.575
		0.948	0.951	0.907	0.774	0.583
		0.967	0.971	0.928	0.825	0.628
	0.03	0.938	0.924	0.903	0.844	0.704
		0.903	0.891	0.864	0.775	0.609
		0.907	0.893	0.865	0.778	0.613
		0.976	0.972	0.952	0.891	0.773

- No DA
- Direct importance estimation
- Structural correspondence learning
- 3D ADA

Result visualization

Experimental dataset

Purified human 20S Proteasome and E.coli Ribosome (Zeev-Ben-Mordehai et al. 2016)

100 subtomograms in each class (including a None class)

 Ribosome, TRiC, Proteasome from a rat neuron culture tomogram (Guo et al. 2018)

80 subtomograms in each class

Purified Hemagglutinin, Apoferritin, Insulin receptor (Noble *et al.* 2018)
 400 subtomograms in each class

Cross-domain prediction accuracy

Accuracy	SNR of Source Domain				
Dataset:	1000	0.5	0.1	0.05	0.03
c	0.375	0.313	0.465	0.331	0.566
S_{e1}	0.578	0.641	0.563	0.584	0.606
C -	0.400	0.370	0.311	0.308	0.336
S_{e2}	0.495	0.469	0.471	0.450	0.377
C	0.313	0.376	0.375	0.372	0.375
S_{e3}	0.688	0.656	0.625	0.621	0.624

Improvement on novel structure recovery

Conclusion

- Lack of annotated data is a major bottlenect for deep learning based supervised subtomogram classification
- 2. Beneficial to have training data from a separate data source where the annotation is readily available or can be performed in a high-throughput fashion.
- Domain shift is a major bottleneck in cross-domain subtomogram classification, which leads to low prediction accuracy.
- 4. 3D-ADA stably improves the cross-domain prediction under different imaging conditions.

Automatic Localization and Identification of Mitochondria in Cellular Electron Cryo-Tomography using Faster-RCNN

Automatic Localization and Identification of Mitochondria in Cellular Electron Cryo-Tomography using Faster-RCNN

Background

- Existing methods:
 - Manual segmentation
 - Time- and effort- consuming
 - Automatic segmentation
 - Focus on specific structures
 - Need precise annotations of contours
- Our goal: a simple and generic method of automatic identification and localization of subcellular structures of interest within *in situ* cryo-ET images with weak annotations

Method

The flowchart of our model

Object detection

Method

- Preprocessing
 - Bilateral filtering^[1]

$$h(x) = k^{-1}(x) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi, x)s(f(\xi), f(x))d\xi$$
 (1)

Where $c(\xi, x)$ is related to the distance between point x and ξ , and $s(f(\xi), f(x))$ is related to the difference between the intensity of x and ξ .

$$c(\xi, x) = e^{-\frac{1}{2} \left(\frac{\|\xi - x\|}{\sigma_d} \right)^2}, s(f(\xi), f(x)) = e^{-\frac{1}{2} \left(\frac{\|f(\xi) - f(x)\|}{\sigma_r} \right)^2}$$

Choose

Then σ_d is the spatial parameter, and σ_r is the range parameter.

Histogram Equalization
 Improve local contrast through evenly distributing grayscale in the histogram

Method: object detection based on Faster RCNN

- Object detection in 2D images
 - Faster RCNN^[1]
 - Feature extraction
 - Region proposal generation
 - RoI pooling
 - Classification and regression
- Application in reconstructed tomogram slices

Faster RCNN

- Dataset
 - 9 tomograms containing mitochondria
 - 486 2D slices manually annotated through LabelImg
 - Train set:402
 - Test set:80
 - Annotation format:
 - PASCAL VOC
- Metrics: AP, IoU, F1 score

Tomogram basename	Image size	All slices	Used slices	
Unstim_20k_mito1	3708×3838	101	75	
Unstim_20k_mito2	3708×3838	89	44	
CTL_Fibro_mitol	3708×3838	82	36	
M2236_Fibro_mito2	3708×3838	90	46	
M2236_truemito3	3708×3838	86	39	
CHX+ Glucose Stimulation A2	3708×3838	53	51	
HighGluc_Mito1	3708×3838	101	71	
HighGluc_Mito2	3708×3838	101	69	
INS_21_g3_t10	3708×3838	81	51	
Total		786	482	

• Data preprocessing: noise reduction and contrast enhancement

• Prediction performance

- Source of error
 - Too small mitochondria
 - Incomplete structure
 - Quality of the original image

Tomogram basename	F_1 score	AP	mloU	Incomplete mitochondria
Unstim_20k_mito1	0.91	0.98	0.826	YES
Unstim_20k_mito2	1	1	0.864	NO
CTL_Fibro_mito1	0.97	0.99	0.843	NO
M2236_Fibro_mito2	0.96	0.99	0.887	YES
M2236_turemito3	0.91	0.97	0.783	NO
CHX + Glucose Stimulation A2	0.94	1	0.75	YES
$HighGluc_Mito1$	0.97	0.99	0.843	NO
HighGluc_Mito2	0.97	0.96	0.837	NO
INS_21_g3_t10	0	0	0	YES

• Prediction on 3D tomogram slices

Conclusion

- The first work to apply Faster-RCNN model to Cryo-ET data
- Demonstrated the high accuracy (AP > 0.95 and IoU > 0.7) and robustness of detection and classification tasks of intracellular mitochondria
- Can be generalized to detect multiple cellular components
- Future work
 - Improving the accuracy of localization
 - Exploring the effects of different network structures

Thank you